Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 1993
Subjective
+5
-0
Consider the following interconnection of the three LTI systems (Fig.1). $${h_1}(t)$$ , $${h_2}(t)$$ and $${h_3}(t)$$ are the impulse responses of these three LTI systems with $${H_1}(\omega )$$, $${H_2}(\omega )$$, and $${H_3}(\omega )$$ as their respective Fourier transforms. Given that $${h_1}\,(t)\, = \,{d \over {dt}}\left[ {{{\sin ({\omega _0}t)} \over {2\,\pi \,t}}} \right],{H_2}(\omega ) = \exp \left( {{{ - j2\pi \omega } \over {{\omega _0}}}} \right)$$
$${h_3}\,(t)\, = u(t)\,and\,x(t)\, = \,\sin \,2\,{\omega _0}t\, + \,\cos \,({\omega _0}t/2),$$ find the output y(t). GATE ECE 1993 Signals and Systems - Continuous Time Linear Invariant System Question 4 English
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics