Analog Circuits
1
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider the common emitter amplifier shown below with the following circuit parameters:
$$\beta = 100,\,{g_m} = 0.3861\,{\rm A}/V,\,{r_0} = \infty ,\,{r_\pi } = 259\,\Omega, $$
$${R_s} = 1\,K\Omega ,{R_B} = 93\,K\Omega ,\,{R_C} = 250\,\Omega, $$
$${R_L} = 1\,K\Omega ,\,{C_1} = \infty \,\,and\,\,{C_2} = 4.7\,\mu F.$$

The lower cut-off frequency due to C2 is
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider the common emitter amplifier shown below with the following circuit parameters:
$$\beta = 100,\,{g_m} = 0.3861\,{\rm A}/V,\,{r_0} = \infty ,\,{r_\pi } = 259\,\Omega, $$
$${R_s} = 1\,K\Omega ,{R_B} = 93\,K\Omega ,\,{R_C} = 250\,\Omega, $$
$${R_L} = 1\,K\Omega ,\,{C_1} = \infty \,\,and\,\,{C_2} = 4.7\,\mu F.$$

The Resistance seen by the source Vs is
3
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
An ideal sawtooth voltage waveform of a frequency 500 Hz and Amplitude 3 V is generated by charging a capacitor of 2 $$\mu F$$ in every cycle the charging requires
4
GATE ECE 2001
MCQ (Single Correct Answer)
+2
-0.6
An npn BJT has gm = 38 mA/V, $${C_\mu }\, = {10^{ - 14}}$$ F, $${C_\pi }\, = 4\, \times {10^{ - 13}}\,F$$ and DC current gain $$\beta \, = \,90$$. For this transistor fT and $${f_\beta }$$ are
Questions Asked from Marks 2
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics