1
GATE ME 2014 Set 1
Numerical
+2
-0
Consider one dimensional steady state heat conduction across a wall (as shown in figure below) of thickness $$30$$ $$mm$$ and thermal conductivity $$15$$ $$W/m.K.$$ At $$x=0,$$ a constant heat flux, $$q'' = 1 \times {10^5}\,\,W/{m^2}$$ is applied. On the other side of the wall, heat is removed from the wall by convection with a fluid at $${25^ \circ }C$$ and heat transfer coefficient of $$250W/{m^2}.K.$$ The temperature (in $${}^ \circ C$$), at $$x=0$$ is
___________


Your input ____
2
GATE ME 2014 Set 2
Numerical
+2
-0
Water flows through a tube of diameter $$25mm$$ at an average velocity of $$1.0m/s.$$ The properties of water are $$\rho = 1000\,\,kg/{m^3},$$ $$\mu = 7.25 \times {10^{ - 4}}\,\,N.s/{m^2},$$ $$\,K = 0.625W/m.K,$$ $$Pr=4.85.$$ Using $$Nu=0.023$$ $$R{e^{0.8}}\,\,{\Pr ^{0.4}},$$ the convective heat transfer coefficient (in $$W/{m^2}.K$$) is ______________.
Your input ____
3
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
The ratios of the laminar hydrodynamic boundary layer thickness to thermal boundary layer thickness of flows of two fluids $$P$$ and $$Q$$ on a flat plate are $${1 \over 2}$$ and $$2$$ respectively. The Reynolds number based on the plate length for both the flows is $${10^4}.$$ The Prandtl and Nusselt numbers for $$P$$ are $${1 \over 8}$$ and $$35$$ respectively. The Prandtl and Nusselt number for $$Q$$ are respectively
4
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
Match the following
List-$${\rm I}$$
$$P.$$ Compressible flow
$$Q.$$ Free surface flow
$$R.$$ Boundary layer flow
$$S.$$ Pipe flow
$$T.$$ Heat convection
List-$${\rm II}$$
$$U.$$ Renolds number
$$V.$$ Nussult number
$$W.$$ Weber number
$$X.$$ Froude number
$$Y.$$ Mach number
$$Z.$$ Skin friction coefficient
Questions Asked from Marks 2
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude