Power System Analysis
Per Unit System
Marks 1Marks 2
Power Generation Cost
Marks 1Marks 2Marks 5
Power System Stability
Marks 1Marks 2Marks 5
Symmetrical Components and Symmetrical and Unsymmetrical Faults
Marks 1Marks 2Marks 5
Circuit Breaker
Marks 1Marks 2Marks 5
Switch Gear and Protection
Marks 1Marks 2Marks 5
Load Flow Studies
Marks 1Marks 2Marks 5
High Voltage Dc Transmission
Marks 1
Generating Power Station
Marks 1Marks 2
Parameters and Performance of Transmission Lines
Marks 1Marks 2Marks 5
1
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a three-phase, $$50Hz,$$ $$11$$ $$kV$$ distribution system. Each of the conductors is suspended by an insulator string having two identical porcelain insulators. The self capacitance of the insulator is $$5$$ times the shunt capacitance between the link an the ground, as shown in the figure. The voltage across the two insulators are GATE EE 2010 Power System Analysis - Parameters and Performance of Transmission Lines Question 32 English
A
$${e_1} = 3.74\,kV,\,{e_2} = 2.61\,kV$$
B
$${e_1} = 3.46\,kV,\,{e_2} = 2.89\,kV$$
C
$${e_1} = 6.0\,kV,\,{e_2} = 4.23\,kV$$
D
$${e_1} = 5.5\,kV,\,{e_2} = 5.5\,kV$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a three-core, three phase, $$50$$ $$Hz$$, $$11$$ $$kV$$ cable whose conductors are denoted as $$R, Y$$ and $$B$$ in the figure. The inter-phase capacitance $$\left( {{C_1}} \right)$$ between each pair of conductors is $$0.2$$ $$\mu F$$ and the capacitance between each line conductor and the sheath is $$0.4$$ $$\mu F$$ . The per-phase charging current is GATE EE 2010 Power System Analysis - Parameters and Performance of Transmission Lines Question 33 English
A
$$2.0$$ $$A$$
B
$$2.4$$ $$A$$
C
$$2.7$$ $$A$$
D
$$3.5$$ $$A$$
3
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
Match the items List-$${\rm I}$$ (To) with the items in List-$${\rm II}$$ (Use) and select the correct answer using the codes given below the lists.

List-$${\rm I}$$
$$A.$$ improve power factor
$$B.$$ reduce the current ripples
$$C.$$ increase the power flow in line
$$D$$ reduce the Ferranti effect

List-$${\rm II}$$
$$1.$$ shunt reactor
$$2.$$ shunt capacitor
$$3.$$ series capacitor
$$4.$$ series reactor

A
$$a \to 2,\,\,b \to 3,\,\,c \to 4,\,\,d \to 1$$
B
$$a \to 2,\,\,b \to 4,\,\,c \to 3,\,\,d \to 1$$
C
$$a \to 4,\,\,b \to 3,\,\,c \to 1,\,\,d \to 2$$
D
$$a \to 4,\,\,b \to 1,\,\,c \to 3,\,\,d \to 2$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A lossless transmission line having Surge Impedance Loading $$(SIL)$$ of $$2280$$ $$MW.$$ A Series capacitive compensation of $$30$$% is emplaced. Then $$SIL$$ of the compensated transmission line will be
A
$$1835$$ $$MW$$
B
$$2280$$ $$MW$$
C
$$2725$$ $$MW$$
D
$$3257$$ $$MW$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement