Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
Consider a sampled signal $$y\left( t \right) = 5 \times {10^{ - 6}}\,x\left( t \right)\,\,\sum\limits_{n = - \infty }^{ + \infty } {\delta \left( {t - n{T_s}} \right)} $$

where $$x\left( t \right) = 10\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$ and
$${T_s} = 100\,\,\mu \sec .$$ When $$y\left( t \right)$$ is passed through an ideal low-pass filter with a cutoff frequency of 5 KHz, the output of the filter is

A
$$5 \times {10^{ - 6}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
B
$$5 \times {10^{ - 5}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
C
$$5 \times {10^{ - 1}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
D
$$10\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
2
GATE ECE 2001
MCQ (Single Correct Answer)
+1
-0.3
A band limited signal is sampled at the Nyquist rate. The signal can be recovered by passing the samples through
A
an RC filter
B
an envelope detector
C
a PLL
D
an ideal low-pass filter with the appropriate bandwidth
3
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
Flat top sampling of low pass signals
A
gives rise to aperture effects
B
implies over sampling
C
leads to aliasing
D
introduces delay distortion
4
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
A 1.0 kHz signal is flat - top sampled at the rate of 1800 samples/sec and the samples are applied to an ideal rectangular LPF with cut - off frequency of 1100 Hz, then the output of the filter contains
A
only 800 Hz component.
B
800 Hz and 900 Hz components.
C
800 Hz and 1000 Hz components.
D
800 Hz, 900 Hz and 1000 Hz components.
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics