Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
1
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Consider a $$2 \times 2$$ square matrix $$A = \left[ {\matrix{ \sigma & x \cr \omega & \sigma \cr } } \right]$$
Where $$x$$ is unknown. If the eigenvalues of the matrix $$A$$ are $$\left( {\sigma + j\omega } \right)$$ and $$\left( {\sigma - j\omega } \right)$$, then $$x$$ is equal to
A
$$ + j\omega $$
B
$$ - j\omega $$
C
$$ + \omega $$
D
$$ - \omega $$
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The value of $$'x'$$ for which all the eigenvalues of the matrix given below are real is $$\left[ {\matrix{ {10} & {5 + j} & 4 \cr x & {20} & 2 \cr 4 & 2 & { - 10} \cr } } \right]$$
A
$$5+j$$
B
$$5-j$$
C
$$1-5j$$
D
$$1+5j$$
3
GATE ECE 2015 Set 1
Numerical
+1
-0
Consider system of linear equations : $$$x-2y+3z=-1$$$ $$$x-3y+4z=1$$$ and $$$-2x+4y-6z=k,$$$

The value of $$'k'$$ for which the system has infinitely many solutions is _______.

Your input ____
4
GATE ECE 2015 Set 1
Numerical
+1
-0
The value of $$'P'$$ such that the vector $$\left[ {\matrix{ 1 \cr 2 \cr 3 \cr } } \right]$$ is an eigenvector of the matrix $$\left[ {\matrix{ 4 & 1 & 2 \cr P & 2 & 1 \cr {14} & { - 4} & {10} \cr } } \right]$$ is ________.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics