Engineering Mathematics
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE CE 2004
MCQ (Single Correct Answer)
+2
-0.6
Biotransformation of an organic compound having concentration $$(x)$$ can be modeled using an ordinary differential equation $$\,{{d\,x} \over {dt}} + k\,{x^2} = 0,$$ where $$k$$ is the reaction rate constant. If $$x=a$$ at $$t=0$$ then solution of the equation is
A
$$x = a\,{e^{ - kt}}$$
B
$$\,{1 \over x} = {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle a$}} + k\,t$$
C
$$x = a\left( {1 - {e^{ - kt}}} \right)$$
D
$$x = a\, + k\,t$$
2
GATE CE 2001
MCQ (Single Correct Answer)
+2
-0.6
The solution for the following differential equation with boundary conditions $$y(0)=2$$ and $$\,\,{y^1}\left( 1 \right) = - 3$$ is where $${{{d^2}y} \over {d{x^2}}} = 3x - 2$$
A
$$y = {{{x^3}} \over 3} - {{{x^2}} \over 2} = 3x - 2$$
B
$$y = 3{x^3} - {{{x^2}} \over 2} - 5x + 2$$
C
$$y = {{{x^3}} \over 2} - {x^2} - 5{x \over 2} + 2$$
D
$$y = {x^3} - {{{x^2}} \over 2} + 5x + {3 \over 2}$$
3
GATE CE 1998
Subjective
+2
-0
Solve $${{{d^4}y} \over {d{x^4}}} - y = 15\,\cos \,\,2x$$
4
GATE CE 1997
MCQ (Single Correct Answer)
+2
-0.6
The differential equation $${{dy} \over {dx}} + py = Q,$$ is a linear equation of first order only if,
A
$$P$$ is a constant but $$Q$$ is a function of $$y$$
B
$$P$$ and $$Q$$ are functions of $$y$$ (or) constants
C
$$P$$ is a function of $$y$$ but $$Q$$ is a constant
D
$$P$$ and $$Q$$ are functions of $$x$$ (or) constants
GATE CE Subjects
Engineering Mechanics
Strength of Materials Or Solid Mechanics
Structural Analysis
Construction Material and Management
Reinforced Cement Concrete
Steel Structures
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Hydrology
Irrigation
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
Engineering Mathematics
General Aptitude