Engineering Mathematics
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE CE 2014 Set 2
Numerical
+2
-0
An observer counts $$240$$veh/h at a specific highway location. Assume that the vehicle arrival at the location is Poisson distributed, the probability of having one vehicle arriving over a $$30$$-second time interval is _______.
Your input ____
2
GATE CE 2014 Set 1
Numerical
+2
-0
The probability density function of evaporation $$E$$ on any day during a year in a watershed is given by $$$f\left( E \right) = \left\{ {\matrix{ {{1 \over 5}} & {0 \le E \le 5\,mm/day} \cr 0 & {otherwise} \cr } } \right.$$$
The probability that $$E$$ lies in between $$2$$ and $$4$$ $$mm/day$$ in the watershed is (in decimal) _______.
Your input ____
3
GATE CE 2014 Set 1
Numerical
+2
-0
A traffic office imposes on an average $$5$$ number of penalties daily on traffic violators. Assume that the number of penalties on different days is independent and follows a Poisson distribution. The probability that there will be less than $$4$$ penalties in a day is ________.
Your input ____
4
GATE CE 2013
Numerical
+2
-0
Find the value of $$\lambda $$ such that the function $$f(x)$$ is a valid probability density function ________.
Your input ____
GATE CE Subjects
Engineering Mechanics
Strength of Materials Or Solid Mechanics
Structural Analysis
Construction Material and Management
Reinforced Cement Concrete
Steel Structures
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Hydrology
Irrigation
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
Engineering Mathematics
General Aptitude