Network Theory
Network Elements
Marks 1Marks 2Marks 5
Network Theorems
Marks 1Marks 2Marks 5
Sinusoidal Steady State Response
Marks 1Marks 2Marks 5Marks 8
Network Graphs
Marks 1Marks 2
State Equations For Networks
Marks 5
1
GATE ECE 1998
Subjective
+5
-0

A voltage source of internal impedance $${\mathrm R}_\mathrm s\;+\;{\mathrm{jX}}_\mathrm s$$ supplies power to a load of impedance $${\mathrm R}_\mathrm L\;+\;{\mathrm{jX}}_\mathrm L$$ in which only $${\mathrm R}_\mathrm L$$ is variable. Determine the value of $${\mathrm R}_\mathrm L$$ for maximum power transfer from the source to the load. Also, find the numerical value of $${\mathrm R}_\mathrm L$$ if the source impedance is 3.0 Ω (purely resistive) and $${\mathrm X}_\mathrm L$$ is 4.0 Ω.

2
GATE ECE 1997
Subjective
+5
-0

In the circuit of Fig. when R = 0 Ω, the current iR equals 10 A.

GATE ECE 1997 Network Theory - Network Theorems Question 10 English

(a) Find the value of R for which it absorbs maximum power.

(b) Find the value of E.

(c) Find v2 when R = $$\infty$$ ( open circuit)

3
GATE ECE 1996
Subjective
+5
-0

In the circuit shown in Fig., it is known that the variable current source I absorbs power.Find I (in magnitude and direction) so that it receives maximum power and also find the amount of power absorbed by it.

GATE ECE 1996 Network Theory - Network Theorems Question 11 English
4
GATE ECE 1995
Subjective
+5
-0

Determine the current, i(t), in the circuit given below, (Fig.), using the Thevenin's theorem.

GATE ECE 1995 Network Theory - Network Theorems Question 12 English
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics