Signals and Systems
1
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}}\,\,$$ has an output
$$y(t) = \cos \left( {2t - {\pi \over 3}} \right)\,$$ for the input signal
$$x(t) = p\cos \left( {2t - {\pi \over 2}} \right)$$. Then, the system parameter 'p' is
$$y(t) = \cos \left( {2t - {\pi \over 3}} \right)\,$$ for the input signal
$$x(t) = p\cos \left( {2t - {\pi \over 2}} \right)$$. Then, the system parameter 'p' is
2
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider the pulse shape s(t) as shown. The impulse response h(t) of the filter matched to this pulse is

3
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
A low-pass filter having a frequency response $$H(j\omega )$$ = $$A(\omega ){e^{j\Phi (\omega )}}$$, does not product any phase distortion if
4
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
In the system shown below,
x(t) = (sint)u(t). In steady-state, the response y(t) will be
x(t) = (sint)u(t). In steady-state, the response y(t) will be

GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics