Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal $$x\left( t \right) = \sin c\left( {\alpha t} \right)$$ where $$\alpha $$ is a real constant $$\left( {\sin \,c\left( x \right) = {{\sin \left( {\pi x} \right)} \over {\pi x}}} \right)$$ is the input to a linear Time invariant system whose impulse response $$h\left( t \right) = \sin c\left( {\beta t} \right)$$ where $$\beta $$ is a real constant. If $$\min \left( {\alpha ,\,\,\beta } \right)$$ denotes the minimum of $$\alpha $$ and $$\beta $$, and similarly $$\max \left( {\alpha ,\,\,\beta } \right)$$ denotes the maximum of $$\alpha $$ and $$\beta $$, and $$K$$ is a constant, which one of the following statements is true about the output of the system?
A
It will be of the form $$K$$ $$sinc$$$$\left( {\gamma t} \right)$$ where $$\gamma = \,\min \left( {\alpha ,\,\,\beta } \right)$$
B
It will be of the form $$K$$ $$sinc$$$$\left( {\gamma t} \right)$$ where $$\gamma = \,\max \left( {\alpha ,\,\,\beta } \right)$$
C
It will be of the form $$K$$ $$\sin c\left( {\alpha t} \right)$$
D
It cannot be a $$sinc$$ type of signal
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a linear time invariant system is given as $$G\left( s \right) = {1 \over {{s^2} + 3s + 2}}.$$ The steady state value of the output of this system for a unit impulse input applied at time instant $$t=1$$ will be
A
$$0$$
B
$$0.5$$
C
$$1$$
D
$$2$$
3
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
$$X\left( z \right) = 1 - 3\,\,{z^{ - 1}},\,\,Y\left( z \right) = 1 + 2\,\,{z^{ - 2}}$$ are $$Z$$-transforms of two signals $$x\left[ n \right],\,\,y\left[ n \right]$$ respectively. A linear time invariant system has the impulse response $$h\left[ n \right]$$ defined by these two signals as $$h\left[ n \right] = x\left[ {n - 1} \right] * y\left[ n \right]$$ where $$ * $$ denotes discrete time convolution. Then the output of the system for the input $$\delta \left[ {n - 1} \right]$$
A
has $$Z$$-transforms $${z^{ - 1}}X\left( z \right)Y\left( z \right)$$
B
equals
$$\delta \left[ {n - 2} \right] - 3\delta \left[ {n - 3} \right] + 2\delta \left[ {n - 4} \right] - 6\delta \left[ {n - 5} \right]$$
C
has $$Z$$-transform $$1 - 3\,{z^{ - 1}} + 2\,{z^{ - 2}} - 6\,{z^{ - 3}}$$
D
does not satisfy any of the above three.
4
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
A signal is processed by a causal filter with transfer function $$G(s).$$ For a distortion free output signal waveform, $$G(s)$$ must
A
provide zero phase shift for all frequencies
B
provide constant phase shift for all frequencies
C
provide linear phase shift that is proportional to frequency
D
provide a phase shift that is inversely proportional to frequency
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement