Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
A real - values signal x(t) limited to the frequency band $$\left| f \right| \le {W \over 2}$$ is passed through a linear time invariant system whose frequency response is
$$H(f) = \left\{ {\matrix{ {{e^{ - j4\pi f}},} & {\left| f \right| \le \,{W \over 2}} \cr {0,} & {\left| f \right| > \,{W \over 2}} \cr } } \right.$$

The output of the system is

A
x(t + 4)
B
x(t - 4)
C
x(t + 2)
D
x(t - 2)
2
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Let g(t) = $${e^{ - \pi {t^2}}}$$, and h(t) is a filter matched to g(t). If g(t) is applied as input to h(t), then the Fourier transform of the output is
A
$${e^{ - \pi {f^2}}}\,$$
B
$${e^{ - \pi {f^2}/2}}\,$$
C
$${e^{ - \pi \left| f \right|}}$$
D
$${e^{ - 2\pi {f^2}}}$$
3
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Assuming zero initial condition, the response y (t) of the system given below to a unit step input u(t) is GATE ECE 2013 Signals and Systems - Transmission of Signal Through Continuous Time LTI Systems Question 29 English
A
u (t)
B
tu (t)
C
$${{{t^2}} \over 2}(t)$$
D
$${e^{ - t}}u(t)$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}}\,\,$$ has an output
$$y(t) = \cos \left( {2t - {\pi \over 3}} \right)\,$$ for the input signal
$$x(t) = p\cos \left( {2t - {\pi \over 2}} \right)$$. Then, the system parameter 'p' is
A
$$\sqrt 3 $$
B
$$\,{2 \over {\sqrt 3 \,}}$$
C
1
D
$${{\sqrt 3 \,} \over 2}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics