Communications
Analog Communication Systems
Marks 1Marks 2
Digital Communication Systems
Marks 1Marks 2Marks 8Marks 10
Random Signals and Noise
Marks 1Marks 2Marks 4
Fundamentals of Information Theory
Marks 1Marks 2
Noise In Digital Communication
Marks 1Marks 2
1
GATE ECE 2015 Set 3
Numerical
+2
-0
A random binary wave $$y(t)$$ is given by $$$y\left( t \right) = \sum\limits_{n = - \infty }^\infty {{X_n}p\left( {t - nT - \phi } \right)} $$$

where $$p(t) = u(t) - u(t - T)$$, $$u(t)$$ is the unit step function and $$\phi $$ is an independent random variable with uniform distribution in $$[0, T]$$. The sequence $$\left\{ {{X_n}} \right\}$$ consists of independent and identically distributed binary valued random variables with $$P\left\{ {{X_n} = + 1} \right\} = P\left\{ {{X_n} = - 1} \right\} = 0.5$$ for each $$n$$.

The value of the autocorrelation $${R_{yy}}\left( {{{3T} \over 4}} \right)\underline{\underline \Delta } E\left[ {y\left( t \right)y\left( {t - {{3T} \over 4}} \right)} \right]\,\,$$


equals ------------ .
Your input ____
2
GATE ECE 2014 Set 3
Numerical
+2
-0
A real band-limited random process $$X( t )$$ has two -sided power spectral density $$${S_x}\left( f \right) = \left\{ {\matrix{ {{{10}^{ - 6}}\left( {3000 - \left| f \right|} \right)Watts/Hz} & {for\left| f \right| \le 3kHz} \cr 0 & {otherwise} \cr } } \right.$$$

Where f is the frequency expressed in $$Hz$$. The signal $$X( t )$$ modulates a carrier cos $$16000$$ $$\pi t$$ and the resultant signal is passed through an ideal band-pass filter of unity gain with centre frequency of $$8kHz$$ and band-width of $$2kHz$$. The output power (in Watts) is ______.

Your input ____
3
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Let $$X(t)$$ be a wide sense stationary $$(WSS)$$ random procfess with power spectral density $${S_x}\left( f \right)$$. If $$Y(t)$$ is the process defined as $$Y(t) = X(2t - 1)$$, the power spectral density $${S_y}\left( f \right)$$ is .
A
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j\pi f}}$$
B
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j\pi f/2}}$$
C
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right)$$
D
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j2\pi f}}$$
4
GATE ECE 2014 Set 3
Numerical
+2
-0
Let $${X_1},\,{X_2},$$ and $${X_3}$$ be independent and identically distributed random variables with the uniform distribution on $$\left[ {0,\,1} \right]$$. The probability $$P\left\{ {{X_1} + {X_2} \le {X_3}} \right\}$$ is ___________ .
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics