Power System Analysis
Per Unit System
Marks 1Marks 2
Power Generation Cost
Marks 1Marks 2Marks 5
Power System Stability
Marks 1Marks 2Marks 5
Symmetrical Components and Symmetrical and Unsymmetrical Faults
Marks 1Marks 2Marks 5
Circuit Breaker
Marks 1Marks 2Marks 5
Switch Gear and Protection
Marks 1Marks 2Marks 5
Load Flow Studies
Marks 1Marks 2Marks 5
High Voltage Dc Transmission
Marks 1
Generating Power Station
Marks 1Marks 2
Parameters and Performance of Transmission Lines
Marks 1Marks 2Marks 5
1
GATE EE 2001
Subjective
+5
-0
A power system has two generators with the following cost curves
Generator $$1:$$ $${C_1}\left( {{P_{G1}}} \right) = 0.006\,P_{G1}^2 + 8{P_{G1}} + 350$$ (Thousand Rupees/Hour)
Generator $$2:$$ $${C_2}\left( {{P_{G2}}} \right) = 0.006\,P_{G2}^2 + 7{P_{G2}} + 400$$ (Thousand Rupees/Hour)
The generator limits are
$$\eqalign{ & 100\,MW \le {P_{G1}} \le 650\,MW \cr & 50\,MW \le {P_{G2}} \le 500\,MW \cr} $$

A load demand of $$600$$ $$MW$$ is supplied by the generators in an optimal manner. Neglecting losses in the transmission network, determine the optimal generation of each generator.

2
GATE EE 1998
Subjective
+5
-0
In a power system, the fuel inputs per hour of plants $$1$$ and $$2$$ are given as
$${F_1} = 0.20\,P_1^2 + 30\,{P_1} + 100\,\,$$ Rs per hour
$${F_2} = 0.25\,P_2^2 + 40\,{P_2} + 150\,\,$$

The limits of generators are $$$\eqalign{ & 20 \le {P_1} \le 80\,MW \cr & 40 \le {P_2} \le 200\,MW \cr} $$$
Find the economic operating schedule of generation, If the load demand is $$130$$ $$MW.$$ neglecting transmission losses.

Questions Asked from Marks 5
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement