Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A continuous-time LTI system with system function H($$\omega$$) has the following pole-zero plot. For this system, which of the alternatives is TRUE? GATE EE 2014 Set 3 Signals and Systems - Miscellaneous Question 3 English
A
$$\left|H\left(0\right)\right|\;>\;\left|H\left(\omega\right)\right|;\;\left|\omega\right|\;>0$$
B
$$\left|H\left(\omega\right)\right|$$ has multiple maxima,at $$\omega_1\;and\;\omega_2$$
C
$$\left|H\left(0\right)\right|\;<\;\left|H\left(\omega\right)\right|;\;\left|\omega\right|\;>0$$
D
$$\left|H\left(\omega\right)\right|=\;cons\;\tan\;t;\;-\infty\;<\;\omega\;<\;\infty$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Given f(t) and g(t)as shown below: GATE EE 2010 Signals and Systems - Miscellaneous Question 1 English The Laplace transform of g(t) is
A
$$\frac1s\left(e^{3s}\;-\;e^{5s}\right)$$
B
$$\frac1s\left(e^{-5s}\;-\;e^{-3s}\right)$$
C
$$\frac{e^{-3s}}s\left(1\;-\;e^{-2s}\right)$$
D
$$\frac1s\left(e^{5s}\;-\;e^{3s}\right)$$
3
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Given f(t) and g(t)as shown below: GATE EE 2010 Signals and Systems - Miscellaneous Question 2 English g(t) can be expressed as
A
g(t) = f(2t - 3)
B
g(t) = $$f\left(\frac t2-3\right)$$
C
g(t) = $$f\left(2t-\frac32\right)$$
D
g(t) = $$f\left(\frac t2-\frac32\right)$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement