Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
A binary tree with $$n>1$$ nodes has $${n_1}$$, $${n_2}$$ and $${n_3}$$ nodes of degree one, two and three respectively. The degree of a node is defined as the number of its neighbours.

$${n_3}$$ can be expressed as:

A
$${n_1}$$ $$+$$ $${n_1}$$ $$-$$ $$1$$
B
$${n_1}$$ $$-$$ $$2$$
C
$$\left[ {{{{n_1} + {n_2}} \over 2}} \right]$$
D
$${n_2}$$ $$-$$ $$1$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
A binary tree with $$n>1$$ nodes has $${n_1}$$, $${n_2}$$ and $${n_3}$$ nodes of degree one, two and three respectively. The degree of a node is defined as the number of its neighbours.

Starting with the above tree, while there remains a node $$v$$ of degree two in the tree, add an edge between the two neighbours of $$v$$ and then remove $$v$$ from the tree. How many edges will remain at the end of the process?

A
$${2^ * }{n_1} - 3$$
B
$${n_2} + {2^ * }{n_1} - 2$$
C
$${n_3} - {n_2}$$
D
$${n_2} + {n_1} - 2$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
$$G$$ is a graph on $$n$$ vertices and $$2n-2$$ edges. The edges of $$G$$ can be partitioned into two edge-disjoint spanning trees. Which of the following in NOT true for $$G$$?
A
For every subset of $$k$$ vertices, the induced subgraph has at most $$2k-2$$ edges
B
The minimum cut in $$G$$ has at least two edges
C
There are two edge-disjoint paths between every pair of vertices
D
There are two vertex-disjoint paths between every pair of vertices
4
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Let Graph$$(x)$$ be a predicate which denotes that $$x$$ is a graph. Let Connected$$(x)$$ be a predicate which denotes that $$x$$ is connected. Which of the following first order logic sentences DOES NOT represent the statement: $$Not\,\,\,every\,\,\,graph\,\,\,is\,\,\,connected?$$
A
$$\neg \forall x\left( {Graph\left( x \right) \Rightarrow Connected\left( x \right)} \right)$$
B
$$\exists x\left( {Graph\left( x \right) \wedge \neg Connected\left( x \right)} \right)$$
C
$$\neg \forall x\left( {\neg Graph\left( x \right) \vee Connected\left( x \right)} \right)$$
D
$$\forall x\left( {Graph\left( x \right) \Rightarrow \neg Connected\left( x \right)} \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization