Discrete Time Signal Z Transformation
Practice Questions
Marks 2
1

If the Z-transform of a finite-duration discrete-time signal $x[n]$ is $X(z)$, then the Z-transform of the signal $y[n] = x[2n]$ is

GATE EE 2024
2

The discrete-time Fourier transform of a signal $$x[n]$$ is $$X(\Omega ) = (1 + \cos \Omega ){e^{ - j\Omega }}$$. Consider that $${x_p}[n]$$ is a periodic signal of period N = 5 such that

$${x_p}[n] = x[n]$$, for $$n = 0,1,2$$

= 0, for $$n = 3,4$$

Note that $${x_p}[n] = \sum\nolimits\limits_{k = 0}^{n - 1} {{a_k}{e^{j{{2\pi } \over N}kn}}} $$. The magnitude of the Fourier series coeffiient $$a_3$$ is __________ (Round off to 3 decimal places).

GATE EE 2023
3
A cascade system having the impulse responses $$$\begin{array}{l}h_1\left(n\right)=\left\{1,\;-1\right\}\;\;\;and\;\;h_2\left(n\right)=\left\{1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$$ is shown in the figure below, where symbol $$\uparrow$$ denotes the time origin. GATE EE 2017 Set 2 Signals and Systems - Discrete Time Signal Z Transformation Question 10 English The input sequence x(n) for which the cascade system produces an output sequence $$$\begin{array}{l}y\left(n\right)=\left\{1,\;2,\;1,\;-1,\;-2,\;-1\right\}\;\;is\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$$
GATE EE 2017 Set 2
4
Consider a discrete time signal given by
x[n]=(-0.25)nu[n]+(0.5)nu[-n-1]
The region of convergence of its Z-transform would be
GATE EE 2015 Set 1
5
A discrete system is represented by the difference equation $$$\begin{bmatrix}X_1\left(k+1\right)\\X_2\left(k+2\right)\end{bmatrix}=\begin{bmatrix}a&a-1\\a+1&a\end{bmatrix}\begin{bmatrix}X_1\left(k\right)\\X_2\left(k\right)\end{bmatrix}$$$ It has initial condition $$X_1\left(0\right)=1;\;X_2\left(0\right)=0$$. The pole location of the system for a = 1, are
GATE EE 2014 Set 2
6
Let $$X\left(z\right)=\frac1{1-z^{-3}}$$ be the Z–transform of a causal signal x[n]. Then, the values of x[2] and x[3] are
GATE EE 2014 Set 1
7
Given X(z)=$$\frac z{\left(z-a\right)^2}$$ with $$\left|z\right|$$ > a, the residue of X(z)zn-1 at z = a for n $$\geq$$ 0 will be
GATE EE 2008
8
The discrete-time signal $$$x\left[n\right]\leftrightarrow X\left(z\right)={\textstyle\sum_{n=0}^\infty}\frac{3^n}{2+n}z^{2n}$$$ where $$\leftrightarrow$$ denote a transform-pair relationship, is orthogonal to the signal
GATE EE 2006
9
If u(k) is the unit step and $$\delta\left(k\right)$$ is the unit impulse function, the inverse z-transform of $$F\left(z\right)=\frac1{z+1}$$ for k>0 is:
GATE EE 2005