Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The solution of the differential equation, for
$$t > 0,\,\,y''\left( t \right) + 2y'\left( t \right) + y\left( t \right) = 0$$ with initial conditions $$y\left( 0 \right) = 0$$ and $$y'\left( 0 \right) = 1,$$ is $$\left[ {u\left( t \right)} \right.$$ denotes the unit step function$$\left. \, \right]$$,
A
$$t{e^{ - t}}\,u\left( t \right)$$
B
$$\left( {{e^{ - t}} - t{e^{ - t}}} \right)u\left( t \right)$$
C
$$\left( { - {e^{ - t}} + t{e^{ - t}}} \right)u\left( t \right)$$
D
$${e^{ - t}}u\left( t \right)$$
2
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$f\left( t \right) = 2\sqrt {t/\pi } $$$$\,\,\,\,\,$$ is$$\,\,\,\,\,$$ $${s^{ - 3/2}}.$$ The Laplace transform of $$g\left( t \right) = \sqrt {1/\pi t} $$ is
A
$$3{s^{ - 5/2}}/2$$
B
$${s^{ - 1/2}}$$
C
$${s^{1/2}}$$
D
$${s^{3/2}}$$
3
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $$X\left( s \right) = {{3s + 5} \over {{s^2} + 10s + 20}}$$ be the Laplace Transform of a signal $$x(t).$$
Then $$\,x\left( {{0^ + }} \right)$$ is
A
$$0$$
B
$$3$$
C
$$5$$
D
$$21$$
4
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ N \right] = {\left( {1/3} \right)^{\left| n \right|}} - {\left( {1/2} \right)^n}\,u\left[ n \right],$$ then the region of convergence $$(ROC)$$ of its $$Z$$-transform in the $$Z$$-plane will be
A
$${1 \over 3} < \left| z \right| < 3$$
B
$${1 \over 3} < \left| z \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| z \right| < 3$$
D
$${1 \over 3} < \left| z \right|$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement