Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Solution, the variable $${x_1}$$ and $${x_2}$$ for the following equations is to be obtained by employing the Newton $$-$$ Raphson iteration method
equation (i) $$10\,{x_2}\,\sin \,{x_1} - 0.8 = 0$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$10\,x_2^2\, - 10\,{x_2}\cos \,{x_1} - 0.6 = 0$$
Assuming the initial values $${x_1} = 0.0$$ and $${x_2} = 1.0$$ the Jacobian matrix is
A
$$\left[ {\matrix{ {10} & { - 0.8} \cr 0 & { - 0.6} \cr } } \right]$$
B
$$\left[ {\matrix{ {10} & 0 \cr 0 & {10} \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & { - 0.8} \cr {10} & { - 0.6} \cr } } \right]$$
D
$$\left[ {\matrix{ {10} & 0 \cr {10} & { - 10} \cr } } \right]$$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A differential equation $${{dx} \over {dt}} = {e^{ - 2t}}\,\,u\left( t \right)\,\,$$ has to be solved using trapezoidal rule of integration with a step size $$h=0.01$$ sec. Function $$u(t)$$ indicates a unit step function. If $$x(0)=0$$ then the value of $$x$$ at $$t=0.01$$ sec will be given by
A
$$0.00099$$
B
$$0.00495$$
C
$$0.0099$$
D
$$0.0198$$
3
GATE EE 1998
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\,\,\,\int\limits_1^2 {{1 \over x}\,\,\,dx\,\,\,\,} $$ computed using simpson's rule with a step size of $$h=0.25$$ is
A
$$0.69430$$
B
$$0.69385$$
C
$$0.69325$$
D
$$0.69415$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement