Small Signal Modeling
Practice Questions
Marks 5
1
The transistor in the amplifier circuit shown in the figure is biased at $${{\rm I}_C} = mA.$$ Use $${V_T}\left( { = {{kT} \over q}} \right) = 26\,mV,$$ $${\beta _0} = 2000,\,{r_b} = 0$$ and $${r_0} \Rightarrow \infty $$ GATE EE 2001 Analog Electronics - Small Signal Modeling Question 6 English
$$(a)$$ Determine the AC small signal midband voltage gain $$\left( {{\raise0.5ex\hbox{$\scriptstyle {{V_o}}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {{V_i}}$}}} \right)$$ of the circuit
$$(b)$$ Determine the required value of $${C_E}$$ for the circuit to have a lower cutoff frequency of $$10Hz$$
GATE EE 2001
2
A current amplifier has an input resistance of $$10\Omega ,$$ an output resistance of $$10\,\,k\Omega $$ and a Current gain of $$1000.$$ It is feed by a current source having a source resistance of $$10$$ $$k\Omega $$ and its output connected to a $$10\,\,k\Omega $$ load resistance. Find the voltage gain and the power gain
GATE EE 2000
3
For the small signal $$BJT$$ amplifier shown in given figure. Determine at $$1$$ $$kHz$$ the following GATE EE 1999 Analog Electronics - Small Signal Modeling Question 8 English

$$(a)$$ $$\,\,\,\,\,\,\,\,$$ Quiescent collector current $${{\rm I}_{CQ}}$$
$$(b)$$ $$\,\,\,\,\,\,\,\,$$ Small signal voltage gain $${{{V_o}} \over {{V_i}}}$$
$$(c)$$ $$\,\,\,\,\,\,\,\,$$ Max. possible swing of the collector current.

GATE EE 1999
4
For the $$JFET$$ amplifier shown in figure $$\mu = 100,\,{r_d} = 50k\Omega $$
$$(i)$$ Draw the $$AC$$ equivalent circuit
$$(ii)$$ Find the voltage gain of the amp GATE EE 1992 Analog Electronics - Small Signal Modeling Question 3 English
GATE EE 1992
5
Figure shows a common emitter amplifier GATE EE 1991 Analog Electronics - Small Signal Modeling Question 4 English 1 GATE EE 1991 Analog Electronics - Small Signal Modeling Question 4 English 2

$$(a)$$ Simplify the circuit by applying thevenin's theorem to biasing network $${R_1},{R_2}$$ at
$$\,\,\,\,\,\,\,$$ the base of the transistor.
$$(b)$$ Assuming $${C_s}$$ to be a short for frequency range considered. Draw the small signal
$$\,\,\,\,\,\,\,$$ $$a.c.$$ model of the circuit obtained in $$(a)$$ by using the simple model for the
$$\,\,\,\,\,\,\,$$ transistor shown in figure.
$$(c)$$ Evaluate the small signal gain $$\left( {{{{V_0}} \over {{V_i}}}} \right)$$ of the amplifier.

GATE EE 1991