Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2024
MCQ (Single Correct Answer)
+2
-1.33

Consider two continuous time signals $x(t)$ and $y(t)$ as shown below

GATE ECE 2024 Signals and Systems - Fourier Transform Question 2 English

If $X(f)$ denotes the Fourier transform of $x(t)$, then the Fourier transform of $y(t)$ is ______.

A

$ -4X(4f)e^{-j\pi f}$

B

$ -4X(4f)e^{-j4\pi f}$

C

$ -\frac{1}{4}X(f/4)e^{-j\pi f}$

D

$ -\frac{1}{4}X(f/4)e^{-j4\pi f}$

2
GATE ECE 2015 Set 2
Numerical
+2
-0
The value of the integral $$\int_{ - \infty }^\infty {12\,\cos (2\pi )\,{{\sin (4\pi t)} \over {4\pi t}}\,dt\,} $$ is
Your input ____
3
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The complex envelope of the bandpass signal $$x(t)\, = \, - \sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right)\sin \left( {\pi t - {\pi \over 4}} \right),$$ centered about f = $${1 \over {2\,}}\,Hz,$$ is
A
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
B
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
C
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
D
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
4
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
For a function g(t), it is given that $$\int_{ - \infty }^\infty {g(t){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}} $$ for any real value $$\omega $$. If y(t)=$$\int_{ - \infty }^t {g(\tau )d\tau ,\,then\,\int_{ - \infty }^\infty {y(t)\,dt} \,} $$ is
A
0
B
- j
C
$$ - {j \over 2}$$
D
$${j \over 2}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics