Signals and Systems
Representation of Continuous Time Signal Fourier SeriesFourier TransformContinuous Time Signal Laplace TransformDiscrete Time Signal Fourier Series Fourier TransformDiscrete Fourier Transform and Fast Fourier TransformDiscrete Time Signal Z TransformContinuous Time Linear Invariant SystemDiscrete Time Linear Time Invariant SystemsTransmission of Signal Through Continuous Time LTI SystemsSamplingTransmission of Signal Through Discrete Time Lti SystemsMiscellaneousDiscrete Time Signal Fourier Series Fourier Transform
Practice QuestionsMarks 1
1
The value of $$\sum\limits_{n = 0}^\infty n {\left( {{1 \over 2}} \right)^n}$$ is ________________.
GATE ECE 2015 Set 3
2
A Fourier transform pair is given by $${\left( {{2 \over 3}} \right)^n}$$ u $$\left[ {n + 3} \right]\,\mathop \Leftrightarrow \limits^{FT} \,{{A{e^{ - j6\pi f}}} \over {1 - \left( {{2 \over 3}} \right){e^{ - j2\pi f}}}}$$ ,
where u(n) donotes the unit step sequence. The values of A is_______________.
where u(n) donotes the unit step sequence. The values of A is_______________.
GATE ECE 2014 Set 4
3
Let x(n) = $${\left( {{1 \over 2}} \right)^n}$$ u(n), y(n) = $${x^2}$$, and Y ($$({e^{j\omega }})\,$$ be the Fourier transform of y(n). Then Y ($$({e^{jo}})$$ is
GATE ECE 2005
Marks 2
1
The radian frequency value(s) for which the discrete time sinusoidal signal $x[n] = A \cos(\Omega n + \pi/3)$ has a period of 40 is/are __.
GATE ECE 2024
2
Consider a discrete-time periodic signal with period N = 5. Let the discrete-time Fourier series (DTFS) representation be $$x[n] = \sum\limits_{k = 0}^4 {{a_k}{e^{{{jk2\pi m} \over 5}}}} $$, where $${a_0} = 1,{a_1} = 3j,{a_2} = 2j,{a_3} = - 2j$$ and $${a_4} = - 3j$$. The value of the sum $$\sum\limits_{n = 0}^4 {x[n]\sin {{4\pi n} \over 5}} $$ is
GATE ECE 2023
3
Let X[k] = k + 1, 0 ≤ k ≤ 7 be 8-point DFT of a sequence x[n],
where X[k] = $$\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]{e^{ - j2\pi nk/N}}} $$.
The value (correct to two decimal places) of $$\sum\limits_{n = 0}^3 {x\left[ {2n} \right]} $$ is ___________.
where X[k] = $$\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]{e^{ - j2\pi nk/N}}} $$.
The value (correct to two decimal places) of $$\sum\limits_{n = 0}^3 {x\left[ {2n} \right]} $$ is ___________.
GATE ECE 2018
4
Let h[n] be the impulse response of a discrete time linear time invariant (LTI) filter. The impulse response is given by h(0)= $${1 \over 3};h\left[ 1 \right] = {1 \over 3};h\left[ 2 \right] = {1 \over 3};\,and\,h\,\left[ n \right]$$ =0 for n < 0 and n > 2. Let H ($$\omega $$) be the Discrete- time Fourier transform (DTFT) of h[n], where $$\omega $$ is the normalized angular frequency in radians. Given that ($${\omega _o}$$) = 0 and 0 < $${\omega _0}$$ < $$\pi $$, the value of $${\omega _o}$$ (in ratians ) is equal to ____________.
GATE ECE 2017 Set 1
5
Two discrete-time signals x [n] and h [n] are both non-zero only for n = 0, 1, 2 and are zero otherwise. It is given that x(0)=1, x[1] = 2, x [2] =1, h[0] = 1, let y [n] be the linear convolution of x[n] and h [n]. Given that y[1]= 3 and y [2] = 4, the value of the expression (10y[3] +y[4]) is _____________________.
GATE ECE 2017 Set 1
6
Consider the signal $$x\left[ n \right] = 6\delta \left[ {n + 2} \right] + 3\delta \left[ {n + 1} \right] + 8\delta \left[ n \right] + 7\delta \left[ {n - 1} \right] + 4\delta \left[ {n - 2} \right]$$.
If X$$({e^{t\omega }})$$is the discrete-time Fourier transform of x[n],
then $${1 \over \pi }\int\limits_{ - \pi }^\pi X ({e^{j\omega }}){\sin ^2}(2\omega )d\omega $$ is equal to ____________.
GATE ECE 2016 Set 1
7
Let $$\widetilde x\left[ n \right]\, = \,1 + \cos \left[ {{{\pi n} \over 8}} \right]$$ be a periodic signal with period 16. Its DFS coefficients are defined by
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
GATE ECE 2015 Set 3
8
A 5-point sequence x [n] is given as x$$\left[ { - 3} \right]$$ =1, x$$\left[ { - 2} \right]$$ =1, x$$\left[ { - 1} \right]$$ =0, x$$\left[ { - 0} \right]$$ = 5, x$$\left[ { - 1} \right]$$ = 1. Let X$$({e^{j\omega }})\,$$ denote the discrete - time Fourier transform of x(n). The value of $$\int\limits_{ - \pi }^\pi x $$
($$({e^{j\omega }})\,$$ d$$\omega $$ is
GATE ECE 2007
9
A sequence x(n) has non-zero values as shown in Fig.
The sequence $$$y(n)=\left\{\begin{array}{l}x\left(\frac n2-1\right)\;\;\;for\;n\;even\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;n\;odd\end{array}\right.$$$
will be

The sequence $$$y(n)=\left\{\begin{array}{l}x\left(\frac n2-1\right)\;\;\;for\;n\;even\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;n\;odd\end{array}\right.$$$
will be
GATE ECE 2005
10
A sequence x(n) has non-zero values as shown in figure. 1
The Fourier transform of y(2n) will be

The Fourier transform of y(2n) will be
GATE ECE 2005