Numerical Methods
Practice Questions
Marks 2
1
Starting with $$x=1,$$ the solution of the equation $$\,{x^3} + x = 1,\,\,$$ after two iterations of Newton-Raphson's method (up to two decimal places) is ______________
GATE ECE 2017 Set 1
2
Consider the first order initial value problem $$\,y' = y + 2x - {x^2},\,\,y\left( 0 \right) = 1,\,\left( {0 \le x < \infty } \right)$$ With exact solution $$y\left( x \right)\,\, = \,\,{x^2} + {e^x}.\,\,$$ For $$x=0.1,$$ the percentage difference between the exact solution and the solution obtained using a single iteration of the second-order Runge-Kutta method with step-size $$h=0.1$$ is __________.
GATE ECE 2016 Set 3
3
The ordinary differential equation $$\,\,{{dx} \over {dt}} = - 3x + 2,\,\,$$ with $$x(0)=1$$ is to be solved using the forward Euler method. The largest time step that can be used to solve the equation without making the numerical solution unstable is _________.
GATE ECE 2016 Set 2
4
Match the application to appropriate numerical method

Applications
$$P1:$$ Numerical integration
$$P2:$$ Solution to a transcendental equation
$$P3:$$ Solution to a system of linear equations
$$P4:$$ Solution to a differential equation

Numerical Method
$$M1:$$ Newton-Raphson Method
$$M2:$$ Runge-Kutta Method
$$M3:$$ Simpson's $$1/3-$$rule
$$M4:$$ Gauss Elimination Method

GATE ECE 2014 Set 3
5
Match the following and choose the correct combination

Group $$-$$ $${\rm I}$$
$$E.$$ Newton $$-$$ Raphson method
$$F.$$ Runge-Kutta method
$$G.$$ Simpson's Rule
$$H.$$ Gauss elimination

Group $$-$$ $${\rm II}$$
$$(1)$$ Solving non-linear equations
$$(2)$$ Solving linear simultaneous equations
$$(3)$$ Solving ordinary differential equations
$$(4)$$ Numerical integration method
$$(5)$$ Interpolation
$$(6)$$ Calculation of eigen values

GATE ECE 2005