Differential Equations
Practice Questions
Marks 1
1

The function $y(t)$ satisfies

$$ t^2 y^{\prime \prime}(t)-2 t y^{\prime}(t)+2 y(t)=0 $$

where $y^{\prime}(t)$ and $y^{\prime \prime}(t)$ denote the first and second derivatives of $y(t)$, respectively. Given $y^{\prime}(0)=1$ and $y^{\prime}(1)=-1$, the maximum value of $y(t)$ over $[0,1]$ is ___________ (rounded off to two decimal places).

GATE ECE 2025
2

The general form of the complementary function of a differential equation is given by $y(t) = (At + B)e^{-2t}$, where $A$ and $B$ are real constants determined by the initial condition. The corresponding differential equation is ____.

GATE ECE 2024
3

Consider the following partial differential equation (PDE)

$$a{{{\partial ^2}f(x,y)} \over {\partial {x^2}}} + b{{{\partial ^2}f(x,y)} \over {\partial {y^2}}} = f(x,y)$$,

where a and b are distinct positive real numbers. Select the combination(s) of values of the real parameters $$\xi $$ and $$\eta $$ such that $$f(x,y) = {e^{\xi x + \eta y}}$$ is a solution of the given PDE.

GATE ECE 2022
4
The general solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} - 5y = 0\,\,\,$$ in terms of arbitrary constants $${K_1}$$ and $${K_2}$$ is
GATE ECE 2017 Set 2
5
Consider the following statements about the linear dependence of the real valued functions $${y_1} = 1,\,\,{y_2} = x$$ and $${y_3} = {x^2}$$. Over the field of real numbers.

$${\rm I}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly independent on $$ - 1 \le x \le 0$$
$${\rm II}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly dependent on $$0 \le x \le 1$$
$${\rm III}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly independent on $$0 \le x \le 1$$
$${\rm IV}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly dependent on $$ - 1 \le x \le 0$$

Which one among the following is correct?

GATE ECE 2017 Set 1
6
The general solution of the differential equation $$\,\,{{dy} \over {dx}} = {{1 + \cos 2y} \over {1 - \cos 2x}}\,\,$$ is
GATE ECE 2015 Set 2
7
Consider the differential equation $$\,\,{{dx} \over {dt}} = 10 - 0.2\,x$$ with initial condition $$x(0)=1.$$ The response $$x(t)$$ for $$t > 0$$ is
GATE ECE 2015 Set 2
8
If $$a$$ and $$b$$ are constants, the most general solution of the differential equation $$\,{{{d^2}x} \over {d{t^2}}} + 2{{dx} \over {dt}} + x = 0$$ is
GATE ECE 2014 Set 4
9
If the characteristic equation of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + 2\alpha {{dy} \over {dx}} + y = 0\,\,$$ has two equal roots, then the values of $$\alpha $$ are
GATE ECE 2014 Set 2
10
With initial condition $$x\left( 1 \right)\,\,\, = \,\,\,\,0.5,\,\,\,$$ the solution of the differential equation, $$\,\,\,t{{dx} \over {dt}} + x = t\,\,\,$$ is
GATE ECE 2012
11
The solution of differential equation $${{dy} \over {dx}} = ky,y\left( 0 \right) = C$$ is
GATE ECE 2011
12
The order of differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + {\left( {{{dy} \over {dx}}} \right)^3} + {y^4} = {e^{ - t}}\,\,$$ is
GATE ECE 2009
13
A solution of the differential equation $${{{d^2}y} \over {d{x^2}}} - 5{{dy} \over {dx}} + 6y = 0\,$$ is given by
GATE ECE 2005
14
The following differential equation has $$3{{{d^2}y} \over {d{t^2}}} + 4{\left( {{{dy} \over {dt}}} \right)^3} + {y^2} + 2 = x$$
GATE ECE 2005
15
$$y = {e^{ - 2x}}$$ is a solution of the differential equation $$\,{y^{11}} + {y^1} - 2y = 0$$
GATE ECE 1994
Marks 2
1
The position of a particle y(t) is described by the differential equation :

$${{{d^2}y} \over {d{t^2}}} = - {{dy} \over {dt}} - {{5y} \over 4}$$.

The initial conditions are y(0) = 1 and $${\left. {{{dy} \over {dt}}} \right|_{t = 0}}$$ = 0.

The position (accurate to two decimal places) of the particle at t = $$\pi $$ is _______.
GATE ECE 2018
2
A curve passes through the point ($$x$$ = 1, $$y$$ = 0) and satisfies the differential equation

$${{dy} \over {dx}} = {{{x^2} + {y^2}} \over {2y}} + {y \over x}$$. The equation that describes the curve is
GATE ECE 2018
3
Which one of the following is the general solution of the first order differential equation $${{dy} \over {dx}} = {\left( {x + y - 1} \right)^2}$$ , where $$x,$$ $$y$$ are real ?
GATE ECE 2017 Set 1
4
The particular solution of the initial value problem given below is $$\,\,{{{d^2}y} \over {d{x^2}}} + 12{{dy} \over {dx}} + 36y = 0\,\,$$ with $$\,y\left( 0 \right) = 3\,\,$$ and $$\,\,{\left. {{{dy} \over {dx}}} \right|_{x = 0}} = - 36\,\,$$
GATE ECE 2016 Set 3
5
Consider the differential equation $${{{d^2}x\left( t \right)} \over {d{t^2}}} + 3{{dx\left( t \right)} \over {dt}} + 2x\left( t \right) = 0$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$

The value of $$x(2)$$ is

GATE ECE 2015 Set 3
6
The Solution of the differential equation $$\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ with $$\,y\left( 0 \right) = {y^1}\left( 0 \right) = 1\,\,$$ is
GATE ECE 2015 Set 1
7
With initial values $$\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 1,\,\,\,$$ the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ at $$x=1$$ is ________.
GATE ECE 2014 Set 4
8
Which ONE of the following is a linear non - homogeneous differential equation , where $$x$$ and $$y$$ are the independent and dependent variables respectively?
GATE ECE 2014 Set 3
9
A function $$n(x)$$ satisfies the differential equation $${{{d^2}n\left( x \right)} \over {d{x^2}}} - {{n\left( x \right)} \over {{L^2}}} = 0$$ where $$L$$ is a constant. The boundary conditions are $$n(0)=k$$ and $$n\left( \propto \right) = 0.$$ The solution to this equation is
GATE ECE 2010
10
Match each differential equation in Group $$I$$ to its family of solution curves from Group $$II.$$

Group $$I$$
$$P:$$$$\,\,\,$$ $${{dy} \over {dx}} = {y \over x}$$
$$Q:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - y} \over x}$$
$$R:$$$$\,\,\,$$ $${{dy} \over {dx}} = {x \over y}$$
$$S:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - x} \over y}$$

Group $$II$$
$$(1)$$$$\,\,\,$$ Circle
$$(2)$$$$\,\,\,$$ straight lines
$$(3)$$$$\,\,\,$$ Hyperbola

GATE ECE 2009
11
Which of the following is a solution to the differential equation $${d \over {dt}}x\left( t \right) + 3x\left( t \right) = 0,\,\,x\left( 0 \right) = 2?$$
GATE ECE 2008
12
The solution of the differential equation $${k^2}{{{d^2}y} \over {d\,{x^2}}} = y - {y_2}\,\,$$ under the boundary conditions (i) $$y = {y_1}$$ at $$x=0$$ and (ii) $$y = {y_2}$$ at $$x = \propto $$ where $$k$$, $${y_1}$$ and $${y_2}$$ are constant is
GATE ECE 2007
13
For the differential equation $${{{d^2}y} \over {d{x^2}}} + {k^2}y = 0,$$ the boundary conditions are
(i) $$y=0$$ for $$x=0$$ and
(ii) $$y=0$$ for $$x=a$$
The form of non-zero solution of $$y$$ (where $$m$$ varies over all integrals ) are
GATE ECE 2006
14
Solve the differential equation $${{{d^2}y} \over {d{x^2}}} + y = x\,\,$$ with the following conditions $$(i)$$ at $$x=0, y=1$$ $$(ii)$$ at $$x=0, $$ $${y^1} = 1$$
GATE ECE 2001
15
Match each of the items $$A, B, C$$ with an appropriate item from $$1, 2, 3, 4$$ and $$5$$

List-$${\rm I}$$
$$(P)$$ $${a_1}{{{d^2}y} \over {d{x^2}}} + {a_2}y{{dy} \over {dx}} + {a_3}y = {a_4}$$
$$(Q)$$ $${a_1}{{{d^2}y} \over {d{x^3}}} + {a_2}y = {a_3}$$
$$(Q)$$ $${a_1}{{{d^2}y} \over {d{x^2}}} + {a_2}x{{dy} \over {dx}} + {a_3}{x^2}y = 0$$

List-$${\rm II}$$
$$(1)$$ Non-linear differential equation
$$(2)$$ Linear differential equation with constants coefficients
$$(3)$$ Linear homogeneous differential equation
$$(4)$$ Non-linear homogeneous differential equation
$$(5)$$ Non-linear first order differential equation

GATE ECE 1994