Communications
Analog Communication Systems
Marks 1Marks 2
Digital Communication Systems
Marks 1Marks 2Marks 8Marks 10
Random Signals and Noise
Marks 1Marks 2Marks 4
Fundamentals of Information Theory
Marks 1Marks 2
Noise In Digital Communication
Marks 1Marks 2
1
GATE ECE 2025
MCQ (Single Correct Answer)
+2
-0.67

A source transmits symbol $S$ that takes values uniformly at random from the set $\{-2,0,2\}$. The receiver obtains $Y=S+N$, where $N$ is a zero-mean Gaussian random variable independent of $S$. The receiver uses the maximum likelihood decoder to estimate the transmitted symbol $S$.

Suppose the probability of symbol estimation error $P_e$ is expressed as follows:

$$ P_e=\alpha P(N>1), $$

where $P(N>1)$ denotes the probability that $N$ exceeds 1 .

What is the value of $\alpha$ ?

A
$\frac{1}{3}$
B
1
C
$\frac{2}{3}$
D
$\frac{4}{3}$
2
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
An analog pulse s(t) is transmitted over an additive white Gaussian noise (AWGN) channel. The received signal is r(t) = s(t) + n(t), where n(t) is additive white Gaussian noise with power spectral density $${{{N_0}} \over 2}$$. The received signal is passed through a filter with impulse response h(t). Let $${E_s}$$ and $${E_n}$$ denote the energies of the pulse s(t) and the filter h(t), respectively. When the signal-to-noise ratio (SNR) is maximized at the output of the filter $$\left( {SN{R_{\max }}} \right)$$, which of the following holds?
A
$${E_s} = \,{E_h};\,\,SN{R_{\max }} = \,{{2{E_s}} \over {{N_0}}}$$
B
$${E_s} = \,{E_h};\,\,SN{R_{\max }} = \,{{{E_s}} \over {2{N_0}}}$$
C
$${E_s} > \,\,{E_h};\,\,SN{R_{\max }} > \,\,{{2{E_s}} \over {{N_0}}}$$
D
$${E_s} < \,\,{E_h};\,\,SN{R_{\max }} = \,\,{{2{E_h}} \over {{N_0}}}$$
3
GATE ECE 2016 Set 1
Numerical
+2
-0
A digital communication system uses a repetition code for channel encoding/decoding. During transmission, each bit is repeated three times (0 is transmitted as 000, and 1 is transmitted as 111). It is assumed that the source puts out symbols independently and with equal probability. The decoder operates as follows: In a block of three received bits, if the number of zeros exceeds the number of ones, the decoder decides in favor of a 0, and if the number of ones exceeds the number of zeros, the decoder decides in favor of a 1, Assuming a binary symmetric channel with crossover probability p = 0.1, the average probability of error is _______
Your input ____
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider a binary, digital communication system which uses pulses g (t) and − g (t)for transmitting bits over an AWGN channel. If the receiver uses a matched filter, which one of the following pulses will give the minimum probability of bit error?
A
GATE ECE 2015 Set 2 Communications - Noise In Digital Communication Question 12 English Option 1
B
GATE ECE 2015 Set 2 Communications - Noise In Digital Communication Question 12 English Option 2
C
GATE ECE 2015 Set 2 Communications - Noise In Digital Communication Question 12 English Option 3
D
GATE ECE 2015 Set 2 Communications - Noise In Digital Communication Question 12 English Option 4
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics