The vectors $\rm \vec a, \vec b\ and\ \vec c$ are of the same length. If taken pairwise they form equal angles. If $\rm \vec a=̂ i+̂ j\ and \ \vec b=̂ j+̂ k,$ then what can $\vec c$ be equal to?
I. î + k̂
II. $\rm \frac{-\hat i+4\hat j-\hat k}{3}$
Select the correct answer using the code given below.
If the direction cosines <l, m, n> of a line are connected by relation $l + 2m + n = 0, 2l - 2m + 3n = 0$, then what is the value of $l^{2} + m^{2} - n^{2}$?
Let $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$. If $\vec{a} \times (\vec{b} \times \vec{a}) = \alpha \hat{i} - \beta \hat{j} + \gamma \hat{k}$, then what is the value of $\alpha + \beta + \gamma$?
If a vector of magnitude 2 units makes an angle $\frac{\pi}{3}$ with $2\hat{i}$, $\frac{\pi}{4}$ with $3\hat{j}$ and an acute angle $\theta$ with $4\hat{k}$, then what are the components of the vector?