Algebra
Sets, Relations and Functions
MCQ (Single Correct Answer)
Quadratic Equations and Inequalities
MCQ (Single Correct Answer)
Sequence And Series
MCQ (Single Correct Answer)
Permutations and Combinations
MCQ (Single Correct Answer)
Three Dimensional Geometry
MCQ (Single Correct Answer)
Trigonometry
Trigonometric Angles and Equations
MCQ (Single Correct Answer)
Inverse Trigonometric Function
MCQ (Single Correct Answer)
Height and Distance
MCQ (Single Correct Answer)
Properties of Triangles
MCQ (Single Correct Answer)
Calculus
Limit, Continuity and Differentiability
MCQ (Single Correct Answer)
Application of Derivatives
MCQ (Single Correct Answer)
Indefinite Integration
MCQ (Single Correct Answer)
Definite Integration
MCQ (Single Correct Answer)
Area Under The Curves
MCQ (Single Correct Answer)
Differential Equations
MCQ (Single Correct Answer)
1
NDA 2015 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
The matrix $$A = \left[ {\matrix{ 1 & 3 & 2 \cr 1 & {x - 1} & 1 \cr 2 & 7 & {x - 3} \cr } } \right]$$ will have inverse for every real number x except for
A
$$x = {{11\, \pm \sqrt 5 } \over 2}$$
B
$$x = {{9\, \pm \sqrt 5 } \over 2}$$
C
$$x = {{11\, \pm \sqrt 3 } \over 2}$$
D
$$x = {{9\, \pm \sqrt 3 } \over 2}$$
2
NDA 2015 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If $$A = \left[ {\matrix{ 1 & 0 & { - 2} \cr 2 & { - 3} & 4 \cr } } \right]$$, then the matrix X for which 2X + 3A = 0 holds true is
A
$$\left[ {\matrix{ { - {3 \over 2}} & 0 & { - 3} \cr { - 3} & { - {9 \over 2}} & { - 6} \cr } } \right]$$
B
$$\left[ {\matrix{ {{3 \over 2}} & 0 & { - 3} \cr 3 & { - {9 \over 2}} & { - 6} \cr } } \right]$$
C
$$\left[ {\matrix{ {{3 \over 2}} & 0 & 3 \cr 3 & {{9 \over 2}} & 6 \cr } } \right]$$
D
$$\left[ {\matrix{ { - {3 \over 2}} & 0 & 3 \cr { - 3} & {{9 \over 2}} & { - 6} \cr } } \right]$$
3
NDA 2015 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If $$A = \left[ {\matrix{ 1 & 1 & { - 1} \cr 2 & { - 3} & 4 \cr 3 & { - 2} & 3 \cr } } \right]$$ and $$B = \left[ {\matrix{ { - 1} & { - 2} & { - 1} \cr 6 & {12} & 6 \cr 5 & {10} & 5 \cr } } \right]$$, then which of the following is/are correct?

1. A and B commute.

2. AB is a null matrix.

Select the correct answer using the codes given below.
A
Only 1
B
Only 2
C
Both 1 and 2
D
Neither 1 nor 2
4
NDA 2015 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
Which one of the following matrices is an elementary matrix?
A
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 5 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 2 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 5 & 2 \cr } } \right]$$