Algebra
Sets, Relations and FunctionsLogarithmsQuadratic Equations and InequalitiesSequence And SeriesBinomial TheoremMatricesDeterminantsPermutations and CombinationsProbabilityComplex NumbersVector AlgebraThree Dimensional GeometryStatisticsTrigonometry
Trigonometric Angles and EquationsInverse Trigonometric FunctionHeight and DistanceProperties of TrianglesCoordinate Geometry
Coordinate System and Straight LineCircleParabolaEllipseHyperbolaConic SectionCalculus
FunctionsLimit, Continuity and DifferentiabilityDifferentiationApplication of DerivativesIndefinite IntegrationDefinite IntegrationArea Under The CurvesDifferential EquationsInverse Trigonometric Function
Practice QuestionsMCQ (Single Correct Answer)
1
The value of $$\tan \left( {2{{\tan }^{ - 1}}{1 \over 5} - {\pi \over 4}} \right)$$ is
NDA 2015 Paper 2
2
Consider the following statements
1. $${\sin ^{ - 1}}{4 \over 5} + {\sin ^{ - 1}}{3 \over 5} = {\pi \over 2}$$
2. $${\tan ^{ - 1}}\sqrt 3 + {\tan ^{ - 1}}1 = - {\tan ^{ - 1}}(2 + \sqrt 3 )$$
Which of the above statement(s) is/are correct?
1. $${\sin ^{ - 1}}{4 \over 5} + {\sin ^{ - 1}}{3 \over 5} = {\pi \over 2}$$
2. $${\tan ^{ - 1}}\sqrt 3 + {\tan ^{ - 1}}1 = - {\tan ^{ - 1}}(2 + \sqrt 3 )$$
Which of the above statement(s) is/are correct?
NDA 2015 Paper 2
3
Consider the following statements
1. Theer exists $$\theta \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ for which $${\tan ^{ - 1}}(\tan \theta ) \ne 0$$.
2. $${\sin ^{ - 1}}\left( {{1 \over 3}} \right) - {\sin ^{ - 1}}\left( {{1 \over 5}} \right)$$
$$ = {\sin ^{ - 1}}\left( {{{2\sqrt 2 (\sqrt 3 - 1)} \over {15}}} \right)$$
Which of the above statements is/are correct?
1. Theer exists $$\theta \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ for which $${\tan ^{ - 1}}(\tan \theta ) \ne 0$$.
2. $${\sin ^{ - 1}}\left( {{1 \over 3}} \right) - {\sin ^{ - 1}}\left( {{1 \over 5}} \right)$$
$$ = {\sin ^{ - 1}}\left( {{{2\sqrt 2 (\sqrt 3 - 1)} \over {15}}} \right)$$
Which of the above statements is/are correct?
NDA 2016 Paper 1
4
Consider the following statements
1. $${\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{1 \over x}} \right) = \pi $$
2. Their exist, $$x,y \in [ - 1,1]$$, where x $$\ne$$ y such that $${\sin ^{ - 1}}x + {\cos ^{ - 1}}y = {\pi \over 2}$$.
Which of the above statements is/are correct?
1. $${\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{1 \over x}} \right) = \pi $$
2. Their exist, $$x,y \in [ - 1,1]$$, where x $$\ne$$ y such that $${\sin ^{ - 1}}x + {\cos ^{ - 1}}y = {\pi \over 2}$$.
Which of the above statements is/are correct?
NDA 2016 Paper 1
5
The value of $${\sin ^{ - 1}}\left( {{3 \over 5}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right)$$ is equal to
NDA 2017 Paper 2
6
The principal value of $${\sin ^{ - 1}}x$$ lies in the interval
NDA 2017 Paper 2
7
Let x, y, z be positive real numbers such that x, y, z are in GP and $${\tan ^{ - 1}}x$$, $${\tan ^{ - 1}}y$$ and $${\tan ^{ - 1}}z$$ are in AP. Then which one of the following is correct?
NDA 2017 Paper 1
8
What is the value of $$\cos (2{\cos ^{ - 1}}0.8)$$ ?
NDA 2017 Paper 1
9
Consider the following values of x
1. 8
2. $$-$$4
3. $${1 \over 6}$$
4. $$-$$ $${1 \over 4}$$
Which of the above values of x is/are the solution(s) of the equation $${\tan ^{ - 1}}(2x) + {\tan ^{ - 1}}(3x) = {\pi \over 4}$$ ?
1. 8
2. $$-$$4
3. $${1 \over 6}$$
4. $$-$$ $${1 \over 4}$$
Which of the above values of x is/are the solution(s) of the equation $${\tan ^{ - 1}}(2x) + {\tan ^{ - 1}}(3x) = {\pi \over 4}$$ ?
NDA 2018 Paper 2
10
If $$\sin x = {1 \over {\sqrt 5 }}$$, $$\sin y = {1 \over {\sqrt {10} }}$$, where $$0 < x < {\pi \over 2}$$, $$0 < y < {\pi \over 2}$$, then what is (x + y) equal to?
NDA 2018 Paper 1
11
What is the principal value of $${\sin ^{ - 1}}\left( {\sin {{2\pi } \over 3}} \right)$$ ?
NDA 2018 Paper 1
12
What is $${\tan ^{ - 1}}\left( {{1 \over 4}} \right) + {\tan ^{ - 1}}\left( {{3 \over 5}} \right)$$ equal to?
NDA 2018 Paper 1
13
What is $$\tan \left\{ {2{{\tan }^{ - 1}}\left( {{1 \over 3}} \right)} \right\}$$ equal to?
NDA 2019 Paper 2
14
What is the value of $${\sin ^{ - 1}}{4 \over 5} + {\sec ^{ - 1}}{5 \over 4} - {\pi \over 2}$$ ?
NDA 2019 Paper 1
15
If $${\sin ^{ - 1}}{{2p} \over {1 + {p^2}}} - {\cos ^{ - 1}}{{1 - {q^2}} \over {1 + {q^2}}} = {\tan ^{ - 1}}{{2x} \over {1 - {x^2}}}$$, then what is x equal to?
NDA 2019 Paper 1
16
If 4 sin-1 x + cos-1 x = π, then what is sin-1 x + 4 cos-1 x equal to?
NDA Mathematics 1st September 2024
17
What is cot2(sec-1 2) + tan2 (cosec-1 3) equal to ?
NDA Mathematics 1st September 2024
18
If $\cos^{-1} x = \sin^{-1} x$, then which one of the following is correct?
NDA Mathematics 21 April 2024
19
What is $\sqrt{15 + \cot^2 \left( \frac \pi 4 - 2 \cot^{-1} 3 \right)}$ equal to?
NDA Mathematics 21 April 2024
20
What is $\tan^{-1} \left( \frac{a}{b} \right) - \tan^{-1} \left( \frac{a - b}{a + b} \right)$ equal to?
NDA Mathematics 21 April 2024
21
What is 2 cot $\left(\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}\right)$ equal to ?
NDA Mathematics 3 September 2023
22
If sec-1 p - cosec-1q = 0, where p > 0, q > 0; then what is the value of p-2 + q-2 ?
NDA Mathematics 3 September 2023
23
What is $1+\sin ^2\left(\cos ^{-1}\left(\frac{3}{\sqrt{17}}\right)\right)$ equal to ?
NDA Mathematics 3 September 2023
24
What is tan−1 cot(cosec−1 2) equal to ?
NDA Mathematics 4 September 2022
25
If $\tan^{-1} \left(\frac{1}{2}\right)+\tan^{-1} \left(\frac{x}{3}\right)=\frac{\pi}{4},$ where 0 < x < 6, then what is x equal to?
NDA Mathematics 10 April 2022
26
If 3 sin-1x + cos-1x = π, then what is x equal to?
NDA Mathematics 10 April 2022
27
Let sin-1x + sin-1y + sin-1z = $\frac{3\pi}{2}$ for 0 ≤ x, y z ≤ 1. What is the value of x1000 + y1001 + z1002?
NDA Mathematics 14 November 2021
28
What is the value of following?
$\rm cot \left[sin^{-1} \frac{3}{5}+cot^{-1}\frac{3}{2} \right]$
NDA Mathematics 14 November 2021
29
What is the slope of the tangent of y = cos-1 (cos x) at x = $-\frac{\pi}{4}$?
NDA Mathematics 14 November 2021
30
$\rm tan^{-1}x+cot^{-1}x=\frac{\pi}{2}$ holds, when
NDA Mathematics 18 April 2021
31
The equation $sin^{-1}x-cos^{-1}x=\frac{\pi}{6}$ has
NDA Mathematics 18 April 2021